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High-order compact-difference-based finite-volume schemes are devel-
oped, analyzed, and implemented for linear wave propagation phenomena
with particular emphasis on computational electromagnetics in the time-
domain. The formulation combines the primitive function approach with five-
point spatially sixth- and fourth-order methods. Optimization in the semi-
discrete case is achieved by minimizing dispersion and isotropy error. The
fully discrete scheme is examined by adopting the classical fourth-order
Runge–Kutta technique. Stability bounds are established and the coefficients
for the spatial discretization are readjusted for optimum performance. The
scheme is then formally extended to multiple dimensions. Consistent bound-
ary conditions are presented for the reconstruction operator as well as flux
specification. Several calculations in one and three dimensions confirm the
properties of the method. Q 1997 Academic Press

Key Words: high-order; finite volume; electromagnetics; compact differ-
encing.

1. INTRODUCTION

The integration of Maxwell’s equations in the time-domain is a computationally
intensive endeavor. Present production algorithms for computational electromag-
netics (CEM) are generally second- or third-order accurate (see, e.g., Refs. [1–3]).
A previous effort [3] has described the implementation of the MUSCL family of
up to third-order schemes for CEM problems. The formulation is derived from
characteristic theory which describes the solution in terms of left and right running
wave components. In this approach, the ‘‘left’’ and ‘‘right’’ states of the solution
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vector are first derived at each cell boundary in the domain. The interface flux is
then computed through eigenvalue-based splitting and the solution is advanced in
time with a two-stage second-order Runge–Kutta scheme. The method is robust
but is relatively diffusive and dispersive at low and high CFL numbers, respectively.
It is thus unsuitable for problems requiring long-time integration. For example, the
radar cross section (RCS) calculation of a typical fighter aircraft under gigahertz
excitation will require O(105) single-processor hours on a Cray C90 and O(1012)
words of memory. More accurate spatial and temporal methods are potentially
more efficient because fewer mesh points and time steps will be required.

Centered schemes have recently gained much popularity in the simulation of
wave propagation phenomena [4–7]. In contrast to upwind methods, the dominant
error in centered semi-discretizations is dispersive. Of particular interest has been
a subset of centered schemes which require very small stencil support. These ‘‘com-
pact’’ schemes can be derived from Taylor series expansions and compute deriva-
tives in a coupled fashion along an entire line. Such methods have the advantage
of simpler boundary condition treatment than their noncompact counterparts and
in addition have smaller truncation error [8].

Compact-difference schemes have been implemented primarily in the finite-dif-
ference (FD) formulation which is relatively straightforward to extend to multiple
dimensions and to generalized coordinates. The incorporation of compact-differ-
ence schemes into the finite-volume (FV) formulation is more complex and, thus, has
lagged significantly in its development. FV methods have several advantages—for
nonlinear phenomena an extensive comparison with high-order FD methods may
be found in Ref. [9]. In FV, since the fluxes collapse telescopically by construction,
flux conservation is easily enforced even on arbitrary meshes. Further, analyses of
cell-centered-type approaches arising naturally in FV are known to have superior
performance in the high wave number range [4] and, also, exhibit lower truncation
error [10]. For these reasons, the present effort will focus on the introduction of
compact-difference schemes to the FV methodology as described in Sections 2.1
and 2.2.

The tridiagonal-based five-point spatial discretization operator chosen in this
work yields a unique sixth-order scheme (Section 2.3). However, through an optimi-
zation procedure for the same stencil and thus computational effort, lower order
schemes can be devised to achieve superior performance in the high wave number
range than the formally sixth-order scheme. Some optimization techniques may be
found in Refs. [4–7]. A single parameter continuous spectrum of fourth-order
optimized schemes is developed in Section 2.4. The high-order reconstruction step
is illustrated in Section 2.5 which also includes a determination of semi-discrete
order of accuracy.

The dynamic nature of electromagnetic wave propagation necessitates the use
of accurate time integration methods as well. Since a frequency dependent time-
step size restriction usually exists from accuracy considerations, contemporary meth-
ods are generally explicit [1–3]. The classical single-step multistage Runge–Kutta
method of fourth-order accuracy, RK4 is chosen for the present effort (Section 3).
This scheme has a relatively large stability bound and can be implemented very
efficiently [11]. In Section 4, the full discretization with RK4 is examined and the
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optimization coefficients for spatial discretization are adjusted further as functions
of the Courant number, n.

Much of the scheme development is performed in the context of the scalar
advection equation. The formal high-order extension to systems of equations in
multiple dimensions is described in Section 5. The implementation of boundary
conditions is outlined in Section 6. Section 7 concludes the paper with simple but
illustrative examples utilizing periodic as well as nonperiodic boundary conditions.

2. DESCRIPTION AND ANALYSIS OF SCHEME

2.1. Finite-Volume Formulation

The time dependent Maxwell’s equations for an electromagnetic field in free
space can be written in flux vector form on a Cartesian (x, y, z) frame as [12, 13]

­U
­t

1
­F
­x

1
­G
­y

1
­H
­z

5 2J, or
­U
­t

1 = ? J 5 2J, (1)

where the solution vector U is written in terms of the electric and magnetic field
strengths, E and H, respectively, as U 5 [Ex , Ey , Ez , Hx , Hy , Hz ]T. F, G, and H
are the flux vectors:

F 5 5
0

Hz/«

2Hy/«

0

2Ez/e

Ey/e

6, G 5 5
2Hz/«

0

Hx/«

Ez/e

0

2Ex/e

6, H 5 5
Hy/«

2Hx/«

0

2Ey/e

Ex/e

0

6 (2)

while J is the point flux tensor (Fi 1 Gj 1 Hk). J is the source vector [Jx/«, Jy/«,
Jz/«, 0, 0, 0]T. For the present investigation, the propagating waves are assumed
to be confined in isotropic media separated by physical interfaces. Under these
conditions, the permittivity, «, and permeability, e, are assumed constant but have
different values in various media [12, 13].

To develop the FV formulation, Eq. (1) is integrated over a volume, V:

EE
V
E ­U

­t
dV 1 EE

V
E = ?

›
J dV 5 2 EE

V
E J dV. (3)

With the application of the Gauss divergence theorem, Eq. (3) becomes

­VU
­t

1 EE
S

J ? n ds 5 2VJ, (4)

where n is the directed area vector on the surface, S, bounding V, and the overbarred
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quantities represent cell averages; e.g., U 5 (1/V) ee
V
e U. Equation (4) relates the

evolution of the cell average to the boundary fluxes which are functions of the
pointwise values of U on the bounding surface. Therefore, for any cell c comprised
of N surfaces with outward normals Sn ,

­VUc

­t
1 oN

n51 J ? Sn 5 Jc . (5)

In discrete form, with ˆ denoting the discrete approximate of each quantity, Eq.
(5) becomes

DVU
ˆ

c

Dt
1 oN

n51 Ĵ ? Sn 5 J
ˆ
c . (6)

Flux conservation is enforced by determining a unique flux for each face as de-
scribed below.

The 1D advection equation is used as the prototype for scheme development:

­u
­t

1
­f
­x

5 0, f 5 cu, c . 0. (7)

For a control volume, x 2 h/2 , x , x 1 h/2, Eq. (5) then implies

­hu
­t

1 Ff Su Sx 1
h
2

, tDD2 f Su Sx 2
h
2

, tDDG5 0, (8)

where u denotes again the average value of u, u 5 (1/h) ex1h/2

x2h/2 u dx. A mesh is
introduced in the domain 0 , x , L consisting of N cells denoted 1, 2, ..., i, ..., N,
and N 1 1 interfaces, As, Ds, ..., i 2 As, i 1 As, ..., N 1 As, as shown in Fig. 1. The discrete
approximation of Eq. (8) is then

­ûi

­t
1

1
h

[ f̂ i11/2 2 f̂ i21/2] 5 0, (9)

where f̂ is the flux function approximating f :

f̂ i11/2 5 f̂ (..., ûi21 , ûi , ûi11 , ...) 5 f̂ (ûi11/2). (10)

FIG. 1. Notation for 1D mesh.
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The order of accuracy can now be introduced into the formulation in the manner
of Ref. [14], where it is shown that for smooth solutions and focusing on the semi-
discrete case, if

f̂ (ûi11/2) 5 f(ui11/2) 1 O(hn) (11)

then

ûi 5 ui 1 O(hn). (12)

In practical terms, knowing ûi , a crucial step reconstruction consists of approximating
the pointwise quantity ûi11/2 to the desired accuracy to enforce Eq. (11); i.e., the
problem is to determine

ûi11/2 5 ui11/2 1 O(hn). (13)

2.2. Reconstruction

The first step in reconstruction is to form a primitive function as in Ref. [14].
The primitive function V of u is defined as V 5 ex

0 u dx. By the second fundamental
theorem of calculus, dV /dx 5 u(x). In the discrete case,

V̂ 1/2 5 0; V̂ i11/2 5 V̂ i21/2 1 ûi h, i 5 1, ..., N, (14)

which follows from the definitions of V and û and where V̂ 1/2 is set to zero arbitrarily
without loss of generality. From the analysis of Ref. [14] for smooth solutions the
desired pointwise values of ûi11/2 may be obtained by evaluating dV̂ /dx:

ûi11/2 5
dV̂

dx
1 O(hn) 5 ui11/2 1 O(hn). (15)

In the following, only discretized quantities are considered and the ˆ is suppressed
for simplicity. At this stage, the present approach deviates from the essentially
nonoscillatory (ENO) scheme described in Refs. [14, 15]. A five-point compact
stencil is employed to evaluate V 9 5 dV /dx(5 u) at each interface,

aV 9i21/2 1 V 9i11/2 1 aV 9i13/2 5 b
V i15/2 2 V i23/2

4h
1 a

V i13/2 2 V i21/2

2h
, (16)

where a, a, and b are constants which determine the spatial properties of the
algorithm. Equation (16) represents a tridiagonal equation system if a ? 0. In FD
settings, similar stencils have been employed, for example, in Refs. [4, 6, 7, 16].

2.3. Semi-discrete Analysis of Compact Differencing Scheme

Upon inserting Taylor series expansions of each term in Eq. (16) about point
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TABLE I
Classification of Schemes Based on Semidiscrete Optimization

Scheme a OA TE

MUSCL — 3 h3 f (4)

12

E4 0 4 2h4 f (5)

30

CD4
1
4

4 2h4 f (5)

120

CD6
1
3

6 h6 f (7)

1260

CD4O1 0.347485 4 h4 S2f (5)

30
1

af (5)

10 D
CD4O2 0.351075 4 –do–
CD4O3 0.370733 4 –do–
CD4O4 0.381365 4 –do–
CD4O5 0.430816 4 –do–
CD4O6 0.376374 4 –do–
CD4O7 0.400218 4 –do–

Note. a 5 2(2 1 a)/3, b 5 (21 1 4a)/3, f (n) 5 ­f n/­xn; OA 5 order of accuracy, TE 5 leading term
in truncation error.

i 1 1/2, and matching coefficients of the various orders, the following sequence of
equations is obtained:

O(h2): 1 2 a 1 2a 2 b 5 0

O(h4): 2a 1 6a 2 4b 5 0 (17)

O(h6): 2a 1 10a 2 16b 5 0.

Fourth-order schemes satisfy only the first two equations in (17). Several standard
schemes can be expressed in terms of this stencil. If a is set to zero, a fourth-order
‘‘explicit’’ scheme results which is denoted E4. Similarly, the original compact
fourth-order scheme described in Ref. [8], denoted CD4, is obtained with b 5 0
(hence a 5 Af, a 5 Ds) and the stencil consists of only three points i 2 As, i 1 As, i 1

Ds. A unique sixth-order scheme, CD6, results with the simultaneous solution of Eq.
(17), a 5 Ad, a 5 AFl , b 5 Al. Table I summarizes the coefficients and leading truncation
error terms of these and other schemes which will be examined further.

Since these schemes will be applied to practical problems, it is relevant to compare
the operation counts of the above compact schemes with MUSCL. For Maxwell’s
equations, the formation of the dependent variables requires 12 operations for
MUSCL (including left and right states), 7 for CD4, and 10 for CD6 and optimized
CD4 schemes. When the flux vector operation count is considered, MUSCL requires
an additional 30 operations to form and sum the split fluxes while the CD schemes
each require only four.
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2.4. Fourth-Order Optimized Schemes

Schemes that sacrifice rigorous order of accuracy in favor of wide-band perfor-
mance can provide significantly better wave propagation characteristics in the high
wave number range (see, for example, Refs. [4–6]). For this, a may be considered
a free parameter, a and b are then expressed in terms of a with the first two of
Eqs. (17),

a 5
2(2 1 a)

3
, b 5

21 1 4a
3

. (18)

It is noted that with b ? 0 the resulting schemes are not strictly compact since the
scheme E4 has the same stencil. Nevertheless, the term ‘‘compact’’ is retained to
emphasize the implicit nature of schemes with a ? 0. To facilitate Fourier analysis,
Eq. (16) may be written in operator notation [17],

A1 ? V 9i11/2 5 A2 ? V i11/2 , A1 ? 5 aE ? 11 ? 1aE21 ?

(19)
A2 ? 5

b
4h

(E2 ? 2E22 ?) 1
a

2h
(E ? 2E21 ?)

where E is the shift operator, (E ? V i 5 V i11). Thus, the spectral function may be
defined as

Â(w) 5
A2 ? eiws

A1 ? eiws 5

i Sa sin(w) 1
b sin(2w)

2 D
1 1 2a cos(w)

(20)

in which, following Ref. [4], w is the scaled wave number w 5 2fkh/L and s is the
scaled length s 5 x/h. The number of intervals per wave is then IPW 5 2f/w and
the frequency is g 5 w/h. The computed dispersion wave number wd is related to
that of the imposed trial solution w through

wd(w) 5 Im(Â(w)). (21)

Alternately, the dispersion wave speed cd 5 wd/w may be employed for analysis.
Since Â(w) is purely imaginary, the discretization is nondiffusive. A scaled isotropy
wave number, wi , may be similarly defined for a wave traveling at angle u to the
mesh [4, 17]:

wi(w, u) 5 cos uwd (w cos u) 1 sin uwd (w sin u). (22)

For optimization purposes, the approach of previous efforts is generalized by
considering the range, 0 , w , wmax , where wmax denotes a variable upper wave
number of interest. Specifically, an L1-norm based dispersion error function, Ed ,
is considered which represents the area between the curves wd and w:
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FIG. 2. Variation of dispersion optimized a (aopt,d) as a function of wave number range. Also shown
are dispersion error functions for a scheme with aopt,d and CD6.

Ed (a, wmax) 5 Ewmax

0
uwd 2 wu dw

(23)
5 Ewmax

0
U[2(2 1 a) 1 cos(w)(21 1 4a)] sin(w)

3[1 1 2a cos(w)]
2 wU dw,

where Eq. (18) has been imposed. Alternative expressions and approaches may be
found in Refs. [4, 5]. For each value of wmax in [0, f], an aopt,d is determined which
minimizes the integrated dispersion error, Ed . aopt,d is plotted versus wmax in Fig.
2, together with the error functions Ed (aopt,d , wmax) and Ed (Ad, wmax) which is the
error function for CD6.

Similarly, an isotropy error function is defined

Ei(a, wmax) 5 Ewmax

0
Ef/2

0
uwi 2 wu du dw, (24)

where again, 0 , wmax , f and the integral over u in Eq. (24) is representative of
all angles of wave propagation to the mesh because of symmetry in each quadrant.
Values of aopt,i minimizing Ei are plotted in Fig. 3, together with Ei(aopt,i , wmax)
and the isotropy error of the sixth-order scheme CD6. Note that in both the above
error functions it has been implicitly assumed that each wave number is equally
weighted. At low values of wmax , the evaluation of both integrals is hampered by
values near machine accuracy. For this reason, in Figs. 2 and 3, results are extrapo-
lated from higher wmax values. aopt values are bracketed in a narrow range:
0.333 , aopt,d , 0.431 and 0.333 , aopt,i , 0.408. Both curves are monotonic and
for the same wmax , aopt values are slightly lower for isotropy error minimization
than for dispersion. In both figures, for low values of wmax , a R Ad which corresponds
to the sixth order scheme, CD6 (see Table I). This is not surprising, since in this
range all waves are well resolved, or equivalently, the mesh is very fine and the
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FIG. 3. Variation of isotropy optimized a (aopt,i) as a function of wave number range. Also shown
are isotropy error functions for a scheme with aopti,i and CD6.

order of accuracy is dictated by the leading term in the truncation error; the O(h4)
term disappears at a 5 Ad and the most accurate scheme corresponds to the highest
order achievable for the given stencil. At higher values of wmax , the optimum a
deviates from Ad and the family of schemes is denoted ‘‘compact’’ fourth-order
optimized, CD4O. At wmax 5 f, aopt,d and aopt,i take values of 0.430816 and 0.408277,
respectively. Note that if a . 0.5, Eqs. (23) and (24) both exhibit singularities at
some w and the error is unlikely to be minimized. Finally, operation in the high
wave number range wmax . f/2 is clearly not fruitful because of the rapid growth
of error. Figures 2 and 3 show that for any wmax , the error functions with the
optimized formally fourth-order schemes are lower than with CD6.

In the high wave number range, the leading truncation error term is not the only
dominant term; i.e., the algorithm does not necessarily operate in the ‘‘linear’’
convergence range. Rather, cancelation of successive truncation error terms occurs.
Consider, instead, of the integral function of Eq. (23), a single wave number w.
Transforming the first two terms of the truncation error expansion into Fourier
space, cancelation occurs at

a(w) 5
242 1 5w2

18(27 1 w2)
(25)

which takes the values Ad at w 5 0 and 0.142 at w 5 f. If three terms in the Fourier
expansion are considered,

a(w) 5
1008 2 120w2 1 7w4

27(112 2 16w2 1 w4)
, (26)

which ranges from Ad at w 5 0 to 0.386 at w 5 2.6 before dropping to 0.364 at
w 5 f. The results presented in Figs. 2 and 3 effectively take higher terms into
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FIG. 4. Dispersion characteristics of semi-discrete schemes. See Table I for key.

account and, in fact, represent minimization of the L1 norm of the truncation error
in Fourier space over the wave number range 0 , w , wmax (see Ref. [17]).

Several schemes described in the literature and using the same stencil have a
values within the bracket of Fig. 2. For example, the schemes of Ref. [4] correspond
to a 5 Gas 5 0.416667 and a 5 Gad 5 0.384615. Similarly, the second-order optimized
schemes of Ref. [7] show a in the range between 0.338599 to 0.379389. However,
in this case, the corresponding coefficients a and b satisfy only the first of Eq. (17).

To illustrate dispersive and isotropy errors of the above schemes, five aopt values
are considered as noted in Table I. CD4O1 and CD4O3 minimize the isotropy
error function for wmax 5 f/2 and 3f/4, respectively, i.e. where the largest wave
number is resolved with 4 and Kd intervals, respectively. Similarly, CD4O2, CD4O4,
and CD4O5 minimize the dispersion error function for wmax values of f/2, 3f/4,
and f. The schemes denoted CD4O6 and CD4O7 will be discussed later in the
context of the full discretization. The dispersion characteristics of the dispersion-
optimized schemes are shown in Fig. 4 in the form wd versus w, together with those
of some of the other schemes of Table I. The exact solution is wd 5 w. The third-
order MUSCL and fourth-order explicit E4 schemes exhibit similar dispersion
errors. However, the former has a dominant diffusion term (not shown) consistent
with its upwind-biased character. For the same order of accuracy, the compact
scheme CD4 is superior to the explicit scheme E4. Large deviation from the exact
curve occurs successively later for CD6, CD4O2, and CD4O4, respectively. How-
ever, the figure suggests that optimization to very high wave numbers is counterpro-
ductive; CD4O5 deviates from the exact significantly prior to CD4O2 or CD4O4.
In the high wave number range, with the exception of CD4O5, all schemes show
lagging error, i.e. wd/w , 1.

Isotropy characteristics of the schemes are shown in Fig. 5 for the isotropy
optimized fourth-order schemes, CD4O1 and CD4O3, together with some of the
other schemes in Table I. u is the angle of wave propagation relative to the mesh
while the magnitude of the radial vector is the propagation speed. For the perfect
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FIG. 5. Isotropy characteristics of semidiscrete schemes. See Table I for key.

scheme, the curve is a unit circle. The four quadrants in this figure are utilized to
show isotropy characteristics at four different wave numbers. For well resolved
waves, w 5 f/8, i.e. 16 intervals per wave; all schemes are quite accurate. As the
wave number is increased, there is substantial degradation in MUSCL, E4, and to
a lesser extent CD4. Although the distinction between the schemes, CD6, CD4O1,
and CD4O3 is relatively small at w 5 f/2, these errors can accumulate in problems
involving long-time wave propagation. At w 5 3f/4, these differences are clearly
evident and, as anticipated, CD4O3 shows the least deviation from the unit circle.
All schemes show the commonly observed preferential propagation direction at
458 to the mesh at high w.

2.5. Order of Accuracy of Pointwise Interface Values

The use of the above schemes in spatial discretization, based on the primitive
function, is now illustrated by a practical examination of truncation error. On 0 ,

x , 1, a test function is imposed consisting of a series of unscaled wave numbers,
w/h 5 1, 2, ..., 9, 10 with random phase and unit amplitude. The domain is discretized
with a sequence of meshes consisting of 50, 100, 200, 400, 800, 1600, and 3200
intervals. The highest frequency, 10, is thus resolved by 5, 10, 20, 40, 80, 160, and
320 intervals while the support for the lowest frequency is the entire mesh. On the
50-interval mesh, Fig. 6 shows the imposed test function at interfaces as the solid line.

The imposed function is then analytically averaged on each interval to obtain
ui at the cell centers. These are plotted as vertical bars straddling the cell center
in Fig. 6. The primitive function V is obtained with Eq. (14) at each interface and
is shown in Fig. 7. The derivative of the primitive function is computed with each
of the formulas of Table I to obtain high-order estimates of the pointwise values
of the imposed function at the interfaces. For the present, the boundaries are treated
analytically. In Fig. 8, the imposed test function of Fig. 6 is replotted as the analytic
curve, together with the computed E4 and CD6 predictions. A close examination
reveals larger discrepancies with E4 than with CD6. With the exception of the 50
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FIG. 6. Test function consisting of 10 frequencies on a mesh with 50 intervals.

and 100 interval meshes, all other discretizations resolve all imposed waves with
at least 20 intervals, corresponding to w 5 f/10. Linear convergence is thus obtained
and regression analysis yields the order of accuracy. This is shown in the L2 norm
of error in Fig. 9. The curves for E4 and CD4 reiterate that for the same order of
accuracy compact schemes are more absolutely accurate. The slope of each least
squares fit agrees reasonably well with theory. Small deviations are attributable to
the nonlinearity of the curve at the coarsest mesh point where the higher frequencies
are not in the linear convergence region. On this mesh, the fourth-order optimized
schemes have lower absolute error. As the mesh is refined, there is a crossover of
CD6 and the CD4O curves as the leading truncation error term becomes more
dominant and the spectrum of scaled wave numbers moves to the left in Fig. 2.

3. TIME DISCRETIZATION

Time-integration is achieved with the classical fourth-order four-stage Runge–
Kutta method. With R denoting the residual, the governing equation is

FIG. 7. Primitive function for profile in Fig. 6.
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FIG. 8. Pointwise values at interfaces through derivative of primitive function.

­u
­t

5 R.

The classical four-stage method may be written as [18]

k0 5 DtR(u0), k1 5 DtR(u1),

k2 5 DtR(u2), k3 5 DtR(u3), (27)

un11 5 u 1 Ah (k0 1 2k1 1 2k2 1 k3),

where u0 5 u(x, t0), u1 5 u0 1 k0/2, u2 5 u1 1 k1/2, u3 5 u2 1 k2 . The scheme is
implemented in the low storage form described in Ref. [19].

FIG. 9. Order of accuracy of various schemes, the comparison of computed and analytic interface
values. Parenthetical values are slopes of least squares fit.
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4. ANALYSIS OF FULL DISCRETIZATION

Runge–Kutta methods can be expressed in the form [17]

un11 5 oK
k50

(2DtA?)k

k!
un, (28)

where K is the total number of stages and A? is the spatial discretization operator,
A? 5 A21

1 ? A2? (see Eq. (19); the (2) in Eq. (28) appears because of the chosen
sign of c in Eq. (7)). In the frequency domain, the complex amplification factor
z(g) is computed by inserting the spectral function of the spatial discretization
operator Â(g) to obtain

z(w) 5 oK
k50

(2Â(w) Dt)k

k!
. (29)

Upon substituting Â(g) from Eq. (20) and further replacing a and b with the fourth-
order requirement of Eq. (18), the expression obtained is

z(w, n, a) 5 1 2
in(4 1 2a 2 cos(w) 1 4a cos(w)) sin(w)

3 1 6a cos(w)

2
n2(4 1 2a 2 cos(w) 1 4a cos(w))2 sin(w)2

2(3 1 6a cos(w))2

1
in3(4 1 2a 2 cos(w) 1 4a cos(w))3 sin(w)3

6(3 1 6a cos(w))3

1
n4(4 1 2a 2 cos(w) 1 4a cos(w))4 sin(w)4

24(3 1 6a cos(w))4 ,

where n is the CFL number, n 5 c Dt/h.
The spectrum of semi-discretely developed schemes of Fig. 2 is now examined.

For each a, a nmax can be determined as the highest value of n for which uzu , 1
for 0 , w , f. nmax has been plotted versus a in Fig. 10 as hollow squares.

FIG. 10. Maximum CFL (left y-axis) and diffusion error (right y-axis) with RK4.
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The maximum CFL number decreases monotonically from 1.42 for the sixth-order
scheme (a 5 Ad) to about 1.0 for a 5 0.431. Clearly, optimization decreases the
stability bound. In comparison, the maximum permissible CFL with RK4 for E4
(a 5 0), CD4 (a 5 0.25), and MUSCL schemes are 2.06, 1.63, and 1.74, respectively.

The first mode to become unstable is in the vicinity of w 5 2f/3, i.e. at roughly
three intervals per wave. For the purposes of further optimization and analysis,
therefore, attention is restricted to schemes that can resolve each wave with at
least four intervals, i.e. wmax 5 f/2. Given this choice, the diffusive error can be
characterized by the function

EDFS,RK4(a, n) 5 Ef/2

0
(1. 2 uz(w, n, a)u) dw. (30)

This diffusion error function is plotted with solid lines in Fig. 10 (right y axis) at
several n values. The curve marked nmax is obtained when each of the schemes is
operated at its maximum CFL number. The error reduces with increase in a.
However, this is dominantly the effect of decreasing nmax . Since the operation count
of each scheme is independent of a, it is more representative to examine the
variation of diffusion error at fixed n. Results with n 5 1.0, 0.75, and 0.5 are plotted
in Fig. 10. Diffusion is a much stronger function of n than of a, especially so at
high n ; note the significant reduction in EDFS from n 5 1 to n 5 0.75, but the
relatively smaller improvement at n 5 0.5. Given that the spectral function of the
spatial discretization is purely imaginary or nondiffusive for all a, the dominant
diffusion characteristic of the algorithm derives from the temporal scheme.

A dispersion error is defined in a manner similar to Eq. (30):

EDSP,RK4(a, n) 5 Ef/2

0
Uw 2

Arg(z(w, n, a))
n

U dw. (31)

This error is shown for various n in Fig. 11, where the nmax curve has been reproduced.
In contrast to diffusion, dispersion errors are not monotonic with either n or a.

FIG. 11. Maximum CFL (left y-axis) and dispersion error (right y-axis) with RK4.
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FIG. 12. Amplification factor for various schemes. Numbers in parentheses are values of n.

When each algorithm is operated at nmax , a minimum occurs at a 5 0.42. At constant
n, the minimum occurs at lower values of a. At n 5 1, the least dispersive scheme
corresponds to a 5 0.400218 which is denoted CD4O7 in Table I. At n 5 0.75, a
particularly interesting scheme results, CD4O6 with a 5 0.376374, where the disper-
sion error is extremely small. With further lowering of n, the minimum dispersive
error occurs at a R 0.351075; i.e. CD4O2 and the properties of the spatial semi-
discretization are recovered. Because of the nonmonotonic nature of dispersion
error variation, in several ranges the dispersive error actually diminishes with larger
n. This suggests a canceling effect of the temporal and spatial operator dispersive
errors similar to that observed for diffusive errors with MUSCL [20].

The amplification properties of some of the above schemes are illustrated in the
polar plot of Fig. 12 at a nominal n 5 0.75. Here, the angle formed with the x-axis
is w while the magnitude of the radial vector is uz(w, a, n)u. The MUSCL scheme
is clearly very diffusive. For the CD schemes, the dominant factor in diffusion error
is clearly the CFL number n, reiterating the point made with Fig. 10. The relatively
high diffusion at high n is naturally detrimental at wave numbers of interest. How-
ever, as demonstrated later, this property can stabilize calculations at high n. Disper-
sion errors for the above schemes are plotted in Fig. 13 and reiterate the conclusions
outlined in the context of Fig. 11. A relative comparison of the magnitudes of
diffusive and dispersive error depends strongly upon n and is deferred to a later
section.

5. EXTENSION TO MULTIPLE DIMENSIONS

A Cartesian coordinate system is chosen to show that the extension to 3D can
be achieved by a simple summation of operators in each direction. For a three-
dimensional case the average in a cell may be denoted by U, where the three
overbars denote averages in the three directions, respectively. Reconstruction in
the x direction (for example) yields the ‘‘line averages’’ [15], Ui11/2 , at each i 1 As

interface, where the two overbars denote averages in the y and z directions, respec-
tively. The flux on this interface, by Eq. (4), is
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FIG. 13. Dispersion characteristics for various schemes. Numbers in parentheses are values of n.

EE
Si11/2

J ? n ds 5 EE
Si11/2

F dy dz. (32)

The linear property is now invoked of Maxwell’s equations for the subset of electro-
magnetic problems of interest. If F is a linear function of U, say F 5 A U, then
the expression for the flux becomes

A EE
Si11/2

U dy dz 5 A Dy DzU,

where Dy and Dz are the sides of the i 1 As face. Consequently, a simple summation
of operators suffices. This last step is not possible when the system is nonlinear.
The extension to curvilinear coordinates may be made in the same fashion as for
other FV based schemes. For example, a description for ENO-type procedures may
be found in Ref. [15]. The difficulties arising in this endeavor are further discussed
in Refs. [9, 21].

6. BOUNDARY CONDITIONS

In the present FV scheme, boundary conditions are applied in two phases. In
the first phase, boundary formulas are required to differentiate the primitive func-
tion, V , at interfaces As, Ds, N 2 As, and N 1 As, respectively, where the interior stencil
accesses points from outside the domain. In the second phase, the values at interfaces
As and N 1 As are reset, based on the physical nature of the problem at these interfaces.

It is important to emphasize that boundary conditions have a profound effect on
scheme properties, particularly stability [16, 22, 23]. The difficulty of obtaining
stable high-order boundary schemes which are ‘‘consistent’’ with the inner scheme,
i.e. preserve their formal order of accuracy, has been noted in the literature (e.g.,
Ref. [24]). Reference [16] contains an extensive and illuminating analysis of some
explicit and compact high-order schemes with various boundary formulas. A heuris-
tic stability investigation of the present interior/boundary scheme combinations is
presented in Section 7.2 which deals with a boundary-dominated problem.
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At interface As, the form of the compact difference equation may be written as

V 91/2 1 a1/2V 93/2 5
1
h

(a1/2V 1/2 1 b1/2V 3/2 1 c1/2V 5/2

1 d1/2V 7/2 1 e1/2V 9/2 1 f1/2V 11/2), (33)

where the right-hand side of Eq. (33) represents a one-sided formulation with as
many undetermined coefficients as are required to obtain a unique formula of sixth
order, which is the highest order considered here. The left-hand side maintains the
tridiagonal structure of the scheme. Upon matching Taylor series coefficients, a
sequence of boundary schemes of varying order of accuracy may be defined. These
are summarized in Table II where, for the lower orders, the most compact stencil
has been chosen. It is noted that some of these boundary formulas have been
reported in the literature (e.g., Refs. [16, 25]).

A similar analysis is applied to the first interface away from the boundary, i.e.,
i 5 Ds. The basic compact equation is

a3/2V 91/2 1 V 93/2 1 a3/2V 95/2 5
1
h

(a3/2V 1/2 1 b3/2V 3/2 1 c3/2V 5/2

1 d3/2V 7/2 1 e3/2V 9/2 1 f3/2V 11/2). (34)

These schemes are summarized in Table III. The conditions required for the right
boundary may be derived in a similar fashion and are symmetric in the sense that
with the exception of a, the signs of each of the constants is reversed; e.g., the
multiplier of V N11/2 is aN11/2 5 2a1/2 , that of V N21/2 is aN21/2 5 2a3/2 , etc.

After the interface values are obtained, the states on the boundary are modified
to enforce physical boundary conditions. A typical boundary face, e.g. As in Fig. 1,
is sketched in Fig. 14, where two states are distinguished on either side of the
surface. The differentiation of the primitive function yields a state of the solution

TABLE II
Boundary Conditions at Interface 1

2
for Differentiation of Primitive Function

OA a1/2 a1/2 b1/2 c1/2 d1/2 e1/2 f1/2 TE

6 5
2197

60
25
12

5
25
3

5
12

21
20

2h6 f (7)

42

5 4
237
12

2
3

3
22
3

1
12

0
h5 f (6)

30

4 3
217

6
3
2

3
2

21
6

0 0
2h4 f (5)

20

3 2
25
2

2
1
2

0 0 0
h3 f (4)

12

2
h2 f (3)

6
2 1 22 2 0 0 0 0

Note. OA 5 order of accuracy, TE 5 leading term of truncation error. Coefficients for N 1 As follow
by reversing the signs of all coefficients except a1/2 .
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TABLE III
Boundary Conditions at Interface 3

2
for Differentiation of Primitive Function

OA a3/2 a3/2 b3/2 c3/2 d3/2 e3/2 f3/2 TE

6
2

11
220
33

235
132

34
33

27
33

2
33

21
132

23h6 f (7)

770

5
3

14
219
28

25
42

6
7

21
14

1
84

0
h5 f (6)

168

4
1
4

23
4

0
3
4

0 0 0
2h4 f (5)

120
3 —

21
2

h2 f (3)

2
2 0 0 0 0 0 0

Note. No third-order scheme is available for chosen compact stencil. Coefficients for N 5 As follow
by reversing the signs of all coefficients except a3/2 .

vector at the boundary face As. This state is associated with U R
1/2 , the state in the

interior of the domain. The state exterior to the domain, U L
1/2 is determined based

upon the type of boundary under consideration. Several types of boundary condi-
tions are distinguished.

• Excitation boundary. In the total field formulation, the excitation is often intro-
duced at an outer boundary. In this case, U L

1/2 is specified by applying an excitation
function (f, say) to the appropriate components of the field vector. The split flux
is then computed with the formula

F1/2 5 F1(U L
1/2) 1 F2

1/2(U R
1/2), where F6 5

0

6
1

2Ïe«
Ey 1

1
2«

Hz

6
1

2Ïe«
Ez 2

1
2«

Hy

0

2
1

2e
Ez 6

1

2Ïe«
Hy

1
2e

Ey 6
1

2Ïe«
Hz

. (35)













This implicitly enforces the condition that there is no reflection of the outgoing wave.

• Absorbing boundary. No reflection is specified by setting U L
1/2 5 0, followed

by the application of Eq. (35).

• Perfect electrical conductor (PEC). The state U R
1/2 is modified to reflect the

conditions n 3 E 5 0 and n ? H 5 0. Denoting this new state UPEC , the flux is
computed as for any interior point, i.e. U L

1/2 5 U R
1/2 5 UPEC . Note that a split flux
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FIG. 14. Schematic of boundary interface for implementation of flux boundary conditions.

may be defined by using U L
1/2 5 UPEC and leaving U R

1/2 unaltered. Our experience
indicates that while this boundary flux-split approach performs better with the
MUSCL scheme, i.e. where the fluxes are split throughout the domain, the centered
approach is more stable in the present compact centered schemes. In the scattered
field formulation, the total field is first constructed at the surface by adding the
incident field at the surface. After application of n 3 E 5 0 and n ? H 5 0, the
incident field is then subtracted and the flux is computed in a similar fashion.

7. ILLUSTRATIVE EXAMPLES

7.1. Propagation of a Transverse Electromagnetic (TEM) Polarized Wave in a
Homogeneous Isotropic Medium

The first example discussed is a boundary-free problem designed to highlight the
properties of the interior schemes analyzed above. A wave is considered, consisting
of a combination of three distinct frequencies (‘‘compact pulse’’) represented by
the equation [26, 27]

f 5 cf (cf1 1 cf2 cos(g1t) 1 cf3 cos(g2t) 1 cf4 cos(g3t)). (36)

To obtain a pulse of unit amplitude, cf 5 1/32, cf1 5 10, cf2 5 215, cf3 5 6, and
cf4 5 21. The frequencies are g1 5 2f, g2 5 4f, and g3 5 6f. The nominal
wavelength corresponds to the largest, lnom 5 1.0. For TEM excitation, U 5 [0, 0,
f, 0, 2f, 0]. The domain is discretized with 38 intervals and the wave travels from
left to right. Periodic conditions are applied to simulate continuous propagation
over many wavelengths. This results in a periodic tridiagonal matrix for the compact
scheme. Since the primitive function is set arbitrarily to zero at interface As, care
must be taken in specifying the wraparound condition. For example, at the left
boundary, elements requiring information from the right boundary must be regener-
ated, e.g., V 21/2 5 V1/2 2 huN .

Results with several schemes are shown in Figs. 15 and 16 in the form of wave
profiles and the L2 norm of error, respectively, where the latter is computed by
comparison of ûi with the theoretical average of the exact solution, ui , in each
cell. The nominal CFL number n is 0.75. The MUSCL scheme is marched only
5lnom and shows a large diffusive error. The results with the CD schemes are
substantially more accurate even at propagation lengths of 50lnom . Although it is
difficult to discern relative differences in Fig. 15, several observations of the above
analysis are confirmed in Fig. 16: (i) the CD4 scheme is relatively less accurate than
the other CD schemes but is substantially superior to MUSCL; (ii) by design, at
n 5 0.75, CD4O6 is more accurate than CD6; (iii) CD4O6 is more accurate at



637SCHEMES FOR LINEAR WAVE PHENOMENA

FIG. 15. Propagation of compact pulse with various schemes at a nominal CFL n 5 0.75. T 5

number of lnoms traveled.

n 5 0.75 than at n 5 0.5. Although the L2 norm does not distinguish between
diffusive and dispersive error, since diffusion error diminishes with n (Fig. 10), this
result indicates that dispersive error is dominant at these n values.

The order of accuracy of the full discretization is investigated in Fig. 17 for
CD4O6 and CD6 by fixing the time-step size to the small value of Dt 5 0.0026,
corresponding to n 5 0.1 on a 38-interval mesh. The formal order of accuracy of
the least squares fit is relatively close to the anticipated value. Deviations are
attributable principally to the nonlinearity of the curve at the coarsest mesh level
and the relatively higher n on the smaller meshes. The fourth-order scheme is again
noted to be superior under conditions of relatively low resolution.

7.2. Wave Reflecting between PEC Walls

Boundary conditions can have significant impact on the stability and accuracy
properties of the algorithm (see Ref. [28] and the references therein, for example).

FIG. 16. L2 norm of error in propagation of compact pulse with various schemes and periodic
conditions (n 5 0.75).
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FIG. 17. Order of accuracy for CD6 and CD4O6 schemes with compact pulse. L2 norm of error at
T 5 1 with Dt 5 0.0026.

Several techniques exist to analyze schemes complete with boundary conditions,
including energy and normal mode methods, for example, the GKS analysis of
Ref. [22]. For fully discrete multistage algorithms such as RK4, the complexity is
enormous [16] although simplifying theories have been proposed to extend semidis-
crete results to the fully discrete case for specific time integration methods [23].
The difficulty in analysis is demonstrated in Ref. [16], where it is noted that higher
order schemes which are stable in the GKS sense are not necessarily asymptotically
or strictly stable. Further, for systems of equations, there are multiple eigenvalues
representing wave speeds in both directions. The state derived at each boundary
is therefore necessarily based upon downwind information for at least some eigen-
values. Indeed, Carpenter et al. [29] note that time-stable schemes for the scalar
case are not necessarily so for systems of equations. In the absence of easy to apply
analytical tools, a heuristic evaluation of the present family of schemes is presented
for a boundary-dominated problem.

For this purpose, the same domain and compact pulse is considered as in the
previous case. The right boundary is assumed to be PEC at all times. In 0 , t ,

1, the left boundary is assumed to be an excitation boundary and the pulse enters
the domain. This tests the excitation type of boundary condition described above.
(Computations starting with the wave already imposed on the domain as an initial
condition show similar overall behavior as below.) After the wave enters the domain,
at t 5 1, the left boundary is converted to a PEC boundary to simulate a 1D cavity.
The wave then bounces back and forth. At t 5 1, 3, 5, ..., the wave form is centered
in the domain on its rightward or incident path while at t 5 2, 4, 6, ..., the form is
again centered but on its leftward path. At t 5 1.5, 2.5, 3.5, ..., the incident and
reflected waves annihilate each other. The wave form interacts continually with
one of the two boundaries.

Following Ref. [16], the notation employed for each spatial discretization is
(a-b-c-d-e), where a through e represent the formulas employed, respectively, at
interfaces As, Ds, interior points, N 2 As and N 1 As. Several of the schemes examined
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FIG. 18. Wave forms at select times with various stable schemes.

exhibit divergence only after a relatively large number of wave reflections (.5). One
such scheme exhibiting a late-time instability is e4-e4-E4-e4-e4, where e4 denotes the
explicit fourth-order boundary condition. This completely explicit scheme is GKS
stable in the semidiscrete case [16]. Pending further theoretical analysis, for the
present it is assumed that a scheme is ‘‘practically stable’’ if the solution does not
diverge up to t p 50; i.e., the wave reflects about 25 times from each boundary.

The results are summarized with the following schemes at various CFL numbers:
6-6-6-6-6, 5-6-6-6-5, 4-5-6-5-4, 4-4-6-4-4, and e4-e4-6-e4-e4 in the sixth-order cate-
gory, and 4-4-CD4O6-4-4, 4-CD4-4 and the above-mentioned e4-e4-E4-e4-e4 in the
fourth-order category. In the context of lower order boundary conditions for higher
order interior schemes, it is relevant to note that the highest formal order of accuracy
actually achievable is only one order more than that of the boundary conditions
[16, 24]. Figure 18 exhibits the wave form for some of these schemes at t 5 49 and
50, respectively, when the wave has reflected 48 and 49 times. Figures 19 and 20

FIG. 19. L2 norm of error for five-point schemes with various boundary formulations. The quantity
in parenthesis is n.
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FIG. 20. L2 norm of error with various five-point schemes, CD4, and MUSCL. The quantity in
parenthesis is n.

display the L2 norm of error when the wave is at the center of the domain, either
on its rightward or on its leftward trajectory. The following observations can be
made: (i) The schemes 6-6-6-6-6 and 5-6-6-6-5 exhibit instabilities relatively quickly
for all n values and are, therefore, not plotted in the figures. (ii) Several schemes
including 4-5-6-5-4, 4-4-6-4-4, and 4-4-CD4O6-4-4, are stable but only at relatively
high values of n p 1.25 but still lower than nmax . For CD4O6, the stability bound
is narrow since nmax 5 1.276. Our experience indicates that the minimum n for
stability is lowered as the mesh is refined. (iii) At these high values of n, the
properties of each stable compact scheme on the five-point stencil is similar at the
same n and the precise boundary formulation is not significant, except that it dictates
stability; note the similarity in error of the first five curves in Fig. 19, consisting of
CD6 with various boundary formulations. (iv) However, the accuracy is a strong
function of n ; note in Fig. 19 the much higher error of 4-5-6-5-4 at n 5 1.42, as
compared to n 5 1.25. Coupled with observation (iii) above, this suggests that the
diffusion inherent in the temporal operator at these high n dominates the solution
(see Fig. 10). (v) Figure 20 shows that compact schemes employing the five-point
stencils, CD6 and CD4O, are superior to the five-point explicit scheme e4-e4-E4-
e4-e4 or the three-point compact scheme 4-CD4-4 scheme at the same n. (vi)
Nevertheless, it is important to note that the absolute error in these schemes is
relatively small compared to MUSCL whose error at this n is predominantly disper-
sive; Fig. 18 indicates a mean error of less than 5% with most schemes at n 5 1.25
and about 7% at n 5 1.42 after 50 reflections.

7.3. Dipole

For a multidimensional case, consider the calculation of the spherical dipole field
which has a closed form solution as described in Ref. [12]. The complications in
this case arise principally from the 1/r 3 variation of the field, as well as from the
singular lines at the poles of the spherical mesh employed. Analytic continuity
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FIG. 21. Dipole solution at t 5 10, f 5 u 5 f/4 (PPW 5 points per wave).

conditions are applied in the latitudinal and longitudinal directions by solving period
tridiagonal systems and considering antipodal meridional planes simultaneously.
Since the origin is a singular point, the inner boundary is located at a radial distance
r 5 0.5, where the excitation is specified from the analytic solution. The propagation
of the signal is examined for scheme 4-5-6-5-4 under various mesh sizes; n is fixed
at the relatively high value of 1.4. Since the smallest time step occurs at the smallest
cell which in turn lies at the pole, the major portion of the domain operates at
lower effective local n. The radial component of the electric field strength, Er , is
plotted in Fig. 21 at t 5 10 for various points per wave, PPW. All the meshes
examined correctly reproduce the 1/r 3 envelope of the signal, the error diminishing
consistently with increased mesh resolution. The inset of Fig. 21 shows the superior-
ity of the present scheme to MUSCL at 8 PPW.

8. CONCLUSIONS

A range of high-order compact difference-based finite-volume schemes has been
developed for linear wave phenomena. The discretization formula for the interior
scheme consists of a five-point stencil. Coefficients are presented which minimize
Fourier analysis-based dispersion and isotropy error functions for each wave number
range of interest.

This semidiscrete analysis is then refined for the full discretization with the
classical fourth-order Runge–Kutta method. Stability bounds are determined and
integrated diffusion and dispersion error functions are employed to then optimize
the full discretization under the assumption that only waves resolved by at least
four or more intervals are of interest. The diffusion error increases monotonically
and nonlinearly with CFL number, but it is a weak function of scheme coefficients.
At low and moderate (p0.75) CFL numbers, dispersion error inherent in the spatial
discretization is dominant, but it can be minimized for specific Dt by the appropriate
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choice of scheme coefficients. Numerical examples with periodic conditions confirm
the results of the analysis.

In order to illustrate the effect of boundary conditions, the rapid reflection of a
TEM wave between two perfect electrical conducting boundaries is examined. The
boundary conditions have a strong influence on the stability of the scheme. This
requires the schemes to be run at nonoptimal CFL numbers, where the diffusion
characteristics of the time-integration operator dominate. Nevertheless, all the com-
pact five-point stencil operators are superior to five-point explicit, three-point com-
pact, and MUSCL schemes. The extension to multidimensions is tested by the
numerical computation of a spherical dipole field.
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